Vector Based Classification of Dermoscopic Images Using SURF
نویسندگان
چکیده
Detection of melanocytic skin lesion at an early stage increases the probability of being cured. Dermoscopy is a widely used diagnostic tool that aids the diagnosis of skin lesions and is proven to increase the accuracy of melanoma diagnosis. In this paper, vector based pattern analysis and classification approach for dermoscopic images are proposed. Feature plays a vital role in pattern recognition system. The various features include color, texture and shape features. Texture is considered as a dominant feature. In this paper lesion is segmented using region based Statistical Region Merging (SRM) algorithm. Scale invariant based Speeded up Robust Features (SURF) technique is used for feature point detection and descriptions under texture analysis. SURF uses Hessian matrix approximation for feature point detection, haarwavelet response for feature descriptions. It uses l*a*b color space for describing color intensities. The patterns so detected are classified using multi-SVM classifier. The proposed system provides the cla3ssification accuracy of 86.37% and sensitivity, specificity rates as 86.53% and 96.42% respectively.
منابع مشابه
Pattern Recognition in Macroscopic and Dermoscopic Images for Skin Lesion Diagnosis
Pattern recognition in macroscopic and dermoscopic images is a challenging task in skin lesion diagnosis. The search for better performing classification has been a relevant issue for pattern recognition in images. Hence, this work was particularly focused on skin lesion pattern recognition, especially in macroscopic and dermoscopic images. For the pattern recognition in macroscopic images, a c...
متن کاملAutomatic classification of Non-alcoholic fatty liver using texture features from ultrasound images
Background: Accurate and early detection of non-alcoholic fatty liver, which is a major cause of chronic diseases is very important and is vital to prevent the complications associated with this disease. Ultrasound of the liver is the most common and widely performed method of diagnosing fatty liver. However, due to the low quality of ultrasound images, the need for an automatic and intelligent...
متن کاملAutomatic Interpretation of UltraCam Imagery by Combination of Support Vector Machine and Knowledge-based Systems
With the development of digital sensors, an increasing number of high-resolution images are available. Interpretation of these images is not possible manually, which necessitates seeking for practical, fast and automatic solutions to solve the environmental and location-based management problems. The land cover classification using high-resolution imagery is a difficult process because of the c...
متن کاملFault Diagnosis of Rolling Bearings Based on SURF algorithm
This paper proposed a new method for fault diagnosis of rolling bearings based on SURF (Speeded-Up Robust Features) algorithm, where two-dimension signal is used. Different from other classical 1-d signal processed methods, the proposed method transforms the 1-dimensional vibration signals into images, then image processed methods are utilized to analyze the image signal so as to reach the goal...
متن کاملSpectral-spatial classification of hyperspectral images by combining hierarchical and marker-based Minimum Spanning Forest algorithms
Many researches have demonstrated that the spatial information can play an important role in the classification of hyperspectral imagery. This study proposes a modified spectral–spatial classification approach for improving the spectral–spatial classification of hyperspectral images. In the proposed method ten spatial/texture features, using mean, standard deviation, contrast, homogeneity, corr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017